19 research outputs found

    Compressively Sensed Image Recognition

    Full text link
    Compressive Sensing (CS) theory asserts that sparse signal reconstruction is possible from a small number of linear measurements. Although CS enables low-cost linear sampling, it requires non-linear and costly reconstruction. Recent literature works show that compressive image classification is possible in CS domain without reconstruction of the signal. In this work, we introduce a DCT base method that extracts binary discriminative features directly from CS measurements. These CS measurements can be obtained by using (i) a random or a pseudo-random measurement matrix, or (ii) a measurement matrix whose elements are learned from the training data to optimize the given classification task. We further introduce feature fusion by concatenating Bag of Words (BoW) representation of our binary features with one of the two state-of-the-art CNN-based feature vectors. We show that our fused feature outperforms the state-of-the-art in both cases.Comment: 6 pages, submitted/accepted, EUVIP 201

    MAMAF-Net: Motion-Aware and Multi-Attention Fusion Network for Stroke Diagnosis

    Full text link
    Stroke is a major cause of mortality and disability worldwide from which one in four people are in danger of incurring in their lifetime. The pre-hospital stroke assessment plays a vital role in identifying stroke patients accurately to accelerate further examination and treatment in hospitals. Accordingly, the National Institutes of Health Stroke Scale (NIHSS), Cincinnati Pre-hospital Stroke Scale (CPSS) and Face Arm Speed Time (F.A.S.T.) are globally known tests for stroke assessment. However, the validity of these tests is skeptical in the absence of neurologists. Therefore, in this study, we propose a motion-aware and multi-attention fusion network (MAMAF-Net) that can detect stroke from multimodal examination videos. Contrary to other studies on stroke detection from video analysis, our study for the first time proposes an end-to-end solution from multiple video recordings of each subject with a dataset encapsulating stroke, transient ischemic attack (TIA), and healthy controls. The proposed MAMAF-Net consists of motion-aware modules to sense the mobility of patients, attention modules to fuse the multi-input video data, and 3D convolutional layers to perform diagnosis from the attention-based extracted features. Experimental results over the collected StrokeDATA dataset show that the proposed MAMAF-Net achieves a successful detection of stroke with 93.62% sensitivity and 95.33% AUC score

    R2C-GAN: Restore-to-Classify GANs for Blind X-Ray Restoration and COVID-19 Classification

    Full text link
    Restoration of poor quality images with a blended set of artifacts plays a vital role for a reliable diagnosis. Existing studies have focused on specific restoration problems such as image deblurring, denoising, and exposure correction where there is usually a strong assumption on the artifact type and severity. As a pioneer study in blind X-ray restoration, we propose a joint model for generic image restoration and classification: Restore-to-Classify Generative Adversarial Networks (R2C-GANs). Such a jointly optimized model keeps any disease intact after the restoration. Therefore, this will naturally lead to a higher diagnosis performance thanks to the improved X-ray image quality. To accomplish this crucial objective, we define the restoration task as an Image-to-Image translation problem from poor quality having noisy, blurry, or over/under-exposed images to high quality image domain. The proposed R2C-GAN model is able to learn forward and inverse transforms between the two domains using unpaired training samples. Simultaneously, the joint classification preserves the disease label during restoration. Moreover, the R2C-GANs are equipped with operational layers/neurons reducing the network depth and further boosting both restoration and classification performances. The proposed joint model is extensively evaluated over the QaTa-COV19 dataset for Coronavirus Disease 2019 (COVID-19) classification. The proposed restoration approach achieves over 90% F1-Score which is significantly higher than the performance of any deep model. Moreover, in the qualitative analysis, the restoration performance of R2C-GANs is approved by a group of medical doctors. We share the software implementation at https://github.com/meteahishali/R2C-GAN

    Early Myocardial Infarction Detection with One-Class Classification over Multi-view Echocardiography

    Get PDF
    Myocardial infarction (MI) is the leading cause of mortality and morbidity in the world. Early therapeutics of MI can ensure the prevention of further myocardial necrosis. Echocardiography is the fundamental imaging technique that can reveal the earliest sign of MI. However, the scarcity of echocardiographic datasets for the MI detection is the major issue for training data-driven classification algorithms. In this study, we propose a framework for early detection of MI over multi-view echocardiography that leverages one-class classification (OCC) techniques. The OCC techniques are used to train a model for detecting a specific target class using instances from that particular category only. We investigated the usage of uni-modal and multi-modal one-class classification techniques in the proposed framework using the HMC-QU dataset that includes apical 4-chamber (A4C) and apical 2-chamber (A2C) views in a total of 260 echocardiography recordings. Experimental results show that the multimodal approach achieves a sensitivity level of 85.23% and F1-Score of 80.21%.Peer reviewe

    Convolutional Sparse Support Estimator Based Covid-19 Recognition from X-ray Images

    Get PDF
    Coronavirus disease (Covid-19) has been the main agenda of the whole world since it came in sight in December 2019. It has already caused thousands of causalities and infected several millions worldwide. Any technological tool that can be provided to healthcare practitioners to save time, effort, and possibly lives has crucial importance. The main tools practitioners currently use to diagnose Covid-19 are Reverse Transcription-Polymerase Chain reaction (RT-PCR) and Computed Tomography (CT), which require significant time, resources and acknowledged experts. X-ray imaging is a common and easily accessible tool that has great potential for Covid-19 diagnosis. In this study, we propose a novel approach for Covid-19 recognition from chest X-ray images. Despite the importance of the problem, recent studies in this domain produced not so satisfactory results due to the limited datasets available for training. Recall that Deep Learning techniques can generally provide state-of-the-art performance in many classification tasks when trained properly over large datasets, such data scarcity can be a crucial obstacle when using them for Covid-19 detection. Alternative approaches such as representation-based classification (collaborative or sparse representation) might provide satisfactory performance with limited size datasets, but they generally fall short in performance or speed compared to Machine Learning methods. To address this deficiency, Convolution Support Estimation Network (CSEN) has recently been proposed as a bridge between model-based and Deep Learning approaches by providing a non-iterative real-time mapping from query sample to ideally sparse representation coefficient' support, which is critical information for class decision in representation based techniques.Comment: 10 page

    Early myocardial infarction detection over multi-view echocardiography

    Get PDF
    Myocardial infarction (MI) is the leading cause of mortality in the world. Its early diagnosis can mitigate the extent of myocardial damage by facilitating early therapeutic interventions. The regional wall motion abnormality (RWMA) of the ischemic myocardial segments is the earliest change to set in that can be captured by echocardiography. However, assessing the motion only from a single echocardiography view may lead to missing the diagnosis of MI as the RWMA may not be visible on that specific view. Therefore, in this study, we propose to fuse apical 4-chamber (A4C) and apical 2-chamber (A2C) views in which a total of 12 myocardial segments can be analyzed for MI detection. The proposed method first estimates the motion of the left ventricle wall by Active Polynomials (APs), which extract and track the endocardial boundary to compute myocardial segment displacements. The features are extracted from the displacements, which are concatenated and fed into the classifiers to detect MI. The main contributions of this study are (1) creation of a new benchmark dataset by including both A4C and A2C views in a total of 260 echocardiography recordings, which is publicly shared with the research community, (2) improving the performance of the prior work of threshold-based APs by a machine learning based approach, and (3) a pioneer MI detection approach via multi-view echocardiography by fusing the information of A4C and A2C views. The proposed method achieves 90.91% sensitivity and 86.36% precision for MI detection over multi-view echocardiography. The software implementation is shared at https://github.com/degerliaysen/MultiEchoAI.Peer reviewe

    Reliable Covid-19 Detection using Chest X-Ray Images

    Get PDF
    Coronavirus disease 2019 (COVID-19) has emerged the need for computer-aided diagnosis with automatic, accurate, and fast algorithms. Recent studies have applied Machine Learning algorithms for COVID-19 diagnosis over chest X-ray (CXR) images. However, the data scarcity in these studies prevents a reliable evaluation with the potential of overfitting and limits the performance of deep networks. Moreover, these networks can discriminate COVID-19 pneumonia usually from healthy subjects only or occasionally, from limited pneumonia types. Thus, there is a need for a robust and accurate COVID-19 detector evaluated over a large CXR dataset. To address this need, in this study, we propose a reliable COVID-19 detection network: ReCovNet, which can discriminate COVID-19 pneumonia from 14 different thoracic diseases and healthy subjects. To accomplish this, we have compiled the largest COVID-19 CXR dataset: QaTa-COV19 with 124,616 images including 4603 COVID-19 samples. The proposed ReCovNet achieved a detection performance with 98.57% sensitivity and 99.77% specificity.acceptedVersionPeer reviewe

    COVID-19 Infection Map Generation and Detection from Chest X-Ray Images

    Get PDF
    Computer-aided diagnosis has become a necessity for accurate and immediate coronavirus disease 2019 (COVID-19) detection to aid treatment and prevent the spread of the virus. Numerous studies have proposed to use Deep Learning techniques for COVID-19 diagnosis. However, they have used very limited chest X-ray (CXR) image repositories for evaluation with a small number, a few hundreds, of COVID-19 samples. Moreover, these methods can neither localize nor grade the severity of COVID-19 infection. For this purpose, recent studies proposed to explore the activation maps of deep networks. However, they remain inaccurate for localizing the actual infestation making them unreliable for clinical use. This study proposes a novel method for the joint localization, severity grading, and detection of COVID-19 from CXR images by generating the so-called infection maps. To accomplish this, we have compiled the largest dataset with 119,316 CXR images including 2951 COVID-19 samples, where the annotation of the ground-truth segmentation masks is performed on CXRs by a novel collaborative human-machine approach. Furthermore, we publicly release the first CXR dataset with the ground-truth segmentation masks of the COVID-19 infected regions. A detailed set of experiments show that state-of-the-art segmentation networks can learn to localize COVID-19 infection with an F1-score of 83.20%, which is significantly superior to the activation maps created by the previous methods. Finally, the proposed approach achieved a COVID-19 detection performance with 94.96% sensitivity and 99.88% specificity

    Advance Warning Methodologies for COVID-19 using Chest X-Ray Images

    Get PDF
    Coronavirus disease 2019 (COVID-19) has rapidly become a global health concern after its first known detection in December 2019. As a result, accurate and reliable advance warning system for the early diagnosis of COVID-19 has now become a priority. The detection of COVID-19 in early stages is not a straightforward task from chest X-ray images according to expert medical doctors because the traces of the infection are visible only when the disease has progressed to a moderate or severe stage. In this study, our first aim is to evaluate the ability of recent \textit{state-of-the-art} Machine Learning techniques for the early detection of COVID-19 from chest X-ray images. Both compact classifiers and deep learning approaches are considered in this study. Furthermore, we propose a recent compact classifier, Convolutional Support Estimator Network (CSEN) approach for this purpose since it is well-suited for a scarce-data classification task. Finally, this study introduces a new benchmark dataset called Early-QaTa-COV19, which consists of 1065 early-stage COVID-19 pneumonia samples (very limited or no infection signs) labelled by the medical doctors and 12 544 samples for control (normal) class. A detailed set of experiments shows that the CSEN achieves the top (over 97%) sensitivity with over 95.5% specificity. Moreover, DenseNet-121 network produces the leading performance among other deep networks with 95% sensitivity and 99.74% specificity.Comment: 12 page

    Early Detection of Myocardial Infarction in Low-Quality Echocardiography

    Get PDF
    Myocardial infarction (MI), or commonly known as heart attack, is a life-threatening health problem worldwide from which 32.4 million people suffer each year. Early diagnosis and treatment of MI are crucial to prevent further heart tissue damages or death. The earliest and most reliable sign of ischemia is regional wall motion abnormality (RWMA) of the affected part of the ventricular muscle. Echocardiography can easily, inexpensively, and non-invasively exhibit the RWMA. In this article, we introduce a three-phase approach for early MI detection in low-quality echocardiography: 1) segmentation of the entire left ventricle (LV) wall using a state-of-the-art deep learning model, 2) analysis of the segmented LV wall by feature engineering, and 3) early MI detection. The main contributions of this study are highly accurate segmentation of the LV wall from low-quality echocardiography, pseudo labeling approach for ground-truth formation of the unannotated LV wall, and the first public echocardiographic dataset (HMC-QU)* for MI detection. Furthermore, the outputs of the proposed approach can significantly help cardiologists for a better assessment of the LV wall characteristics. The proposed approach has achieved 95.72% sensitivity and 99.58% specificity for the LV wall segmentation, and 85.97% sensitivity, 74.03% specificity, and 86.85% precision for MI detection on the HMC-QU dataset. *The benchmark HMC-QU dataset is publicly shared at the repository https://www.kaggle.com/aysendegerli/hmcqu-datase
    corecore